Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin.

نویسندگان

  • Beata Jastrzebska
  • Marcin Golczak
  • Dimitrios Fotiadis
  • Andreas Engel
  • Krzysztof Palczewski
چکیده

Transitory binding between photoactivated rhodopsin (Rho* or Meta II) and the G protein transducin (Gt-GDP) is the first step in the visual signaling cascade. Light causes photoisomerization of the 11-cis-retinylidene chromophore in rhodopsin (Rho) to all-trans-retinylidene, which induces conformational changes that allow Gt-GDP to dock onto the Rho* surface. GDP then dissociates from Gt, leaving a transient nucleotide-empty Rho*-Gt(e) complex before GTP becomes bound, and Gt-GTP then dissociates from Rho*. Further biochemical advances are required before structural studies of the various Rho*-Gt complexes can be initiated. Here, we describe the isolation of n-dodecyl-beta-maltoside solubilized, stable, functionally active, Rho*-Gt(e), Rho(e)*-Gt(e), and 9-cis-retinal/11-cis-retinal regenerated Rho-Gt(e) complexes by sucrose gradient centrifugation. In these complexes, Rho* spectrally remained in its Meta II state, and Gt(e) retained its ability to interact with GTPgammaS. Removal of all-trans-retinylidene from Rho*-Gt(e) had no effect on the stability of the Rho(e)*-Gt(e) complex. Moreover, opsin in the Rho(e)*-Gt(e) complex with an empty nucleotide-binding pocket in Gt and an empty retinoid-binding pocket in Rho was regenerated up to 75% without complex dissociation. These results indicate that once Rho* couples with Gt, the chromophore plays a minor role in stabilizing this complex. Moreover, in complexes regenerated with 9-cis-retinal/11-cis-retinal, Rho retains a conformation similar to Rho* that is stabilized by Gt(e) apo-protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the complex between transducin and photoactivated rhodopsin, a prototypical G-protein-coupled receptor.

Obtaining a reliable 3D model for the complex formed by photoactivated rhodopsin (R*) and its G-protein, transducin (Gtalphabetagamma), would significantly benefit the entire field of structural biology of G-protein-coupled receptors (GPCRs). In this study, we have performed extensive configurational sampling for the isolated C-terminal fragment of the alpha-subunit of transducin, Gtalpha 340-3...

متن کامل

Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.

Heterotrimeric G proteins become activated after they form a catalytically active complex with activated G protein-coupled receptors (GPCRs) and GTP replaces GDP on the G protein alpha-subunit. This transient coupling can be stabilized by nucleotide depletion, resulting in an empty-nucleotide G protein-GPCR complex. Efficient and reproducible formation of conformationally homogeneous GPCR-Gt co...

متن کامل

Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.

Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh*), direct evidence for thi...

متن کامل

Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.

PURPOSE To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. METHODS Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membr...

متن کامل

Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT-GTP and β1γ1 subunit complex. Structural information for the Rho*-GT complex will be e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2009